
Statistical determination of the step size of molecular motors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys.: Condens. Matter 17 S3811

(http://iopscience.iop.org/0953-8984/17/47/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 06:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/17/47
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 17 (2005) S3811–S3820 doi:10.1088/0953-8984/17/47/012

Statistical determination of the step size of molecular
motors

K C Neuman, O A Saleh1, T Lionnet, G Lia, J-F Allemand, D Bensimon
and V Croquette

Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, Paris 75005,
France

E-mail: keir.neuman@lps.ens.fr

Received 19 September 2005
Published 4 November 2005
Online at stacks.iop.org/JPhysCM/17/S3811

Abstract
Molecular motors are enzymatic proteins that couple the consumption of
chemical energy to mechanical displacement. In order to elucidate the
translocation mechanisms of these enzymes, it is of fundamental importance
to measure the physical step size. The step size can, in certain instances, be
directly measured with single-molecule techniques; however, in the majority of
cases individual steps are masked by noise. The step size can nevertheless be
obtained from noisy single-molecule records through statistical methods. This
analysis is analogous to determining the charge of the electron from current
shot noise. We review methods for obtaining the step size based on analysing,
in both the time and frequency domains, the variance in position from noisy
single-molecule records of motor displacement. Additionally, we demonstrate
how similar methods may be applied to measure the step size in bulk kinetic
experiments.

1. Introduction

A large class of enzymes translocate, or ‘step’, along a linear protein or nucleic acid track by
converting chemical energy to motion. Included in this class of enzymes are molecular motors
in the kinesin and myosin families, and a host of processive nucleic acid enzymes, such as
helicases, polymerases, exonucleases, type I endonucleases, and DNA translocases. For these
enzymes, determining the unitary motion associated with a single biochemical cycle, i.e. the
step size, is paramount for understanding the translocation mechanism of the protein along its
track. More generally, the concept of a ‘step’ may be applied to any enzyme activity that results
in quantized mechanical motion. This broader group includes F1 F0 ATPase, which produces
discrete rotations, and topoisomerases, which relax integer numbers of DNA supercoils. The
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reaction cycle of a motor protein can be viewed as a biochemical cycle, in which chemical
energy is consumed, coupled to a mechanical cycle in which work is performed in advancing
the protein one step. In this simple picture, the biochemical cycle is defined as a sequence
of chemical and conformational states, such as ATP binding, hydrolysis, and product release,
whereas the mechanical cycle is essentially defined by the distance the enzyme travels along
its track in one cycle. An accurate measure of the step size therefore constrains possible
mechanisms of translocation.

Measurements of the step size also provide insight into the coupling between the
biochemical and mechanical cycles. This mechanochemical coupling can be thought of as
a transmission that connects the chemical and mechanical cycles. The coupling ratio is the
number of chemical cycles per step, which may be constant (tightly coupled), or variable
(loosely coupled). These parameters correspond to the gear ratio and clutch slippage in the
transmission analogy. On a structural level, the step size may provide insight into the enzyme
domain motions required for translocation that in turn may serve as the basis for structural
modelling.

The fundamental importance of the step size is underscored by the development of
numerous methods for accurately determining this quantity for translocases. Sensitive single-
molecule manipulation and measurement techniques, e.g. optical tweezers [1], magnetic
tweezers [2], and single-molecule fluorescence detection [3], permit the direct observation
of the discrete stepping of several molecular motors, in particular kinesin [4], dynein [5],
and members of the myosin family [6–8]. These observations are possible as the relatively
large step size of these proteins (∼5–35 nm) and long step times (at low ATP concentrations)
afford large signal-to-noise ratios. Single-molecule measurements, in which varying loads
opposing the mechanical step are applied, further permit an indirect measure of the step size
through the load dependence of the enzymatic reaction rate [9]. For the particular case in
which the mechanical transition is in rapid equilibrium, the change in enzymatic rate results
from the additional work associated with translocating one step, δx , against the applied force,
F [10, 11]. The forward rate, k, is therefore given by k(F) = k∗

0 exp(−F ·δx/kBT ), where k0 is
the rate in the absence of force. Although step size determination is most easily accomplished
employing single-molecule techniques, which avoid the averaging and dephasing inherent in
bulk approaches, methods have been developed for indirectly determining the step size from
bulk measurements. For example, using rapid stopped-flow kinetic measurement techniques,
the number of ATP molecules hydrolysed per PcrA helicase as a function of DNA length has
been determined, thereby permitting an indirect measurement of the PcrA helicase unwinding
step size [12].

Lohman and co-workers developed a complex ‘n-step’ kinetic model for determining the
step size of DNA helicases in bulk assays [13–15]. Pre-steady state kinetic measurements of
the time course of the amount of DNA unwound exhibit a lag phase indicative of the number of
rate-limiting steps required for unwinding a DNA molecule. A detailed n-step kinetic model
including finite processivity and possible additional rate-limiting steps can be fitted to the time
course of the appearance of unwound DNA. Global fits of this model to the data for unwinding
of dsDNA of different lengths provide the enzyme step size [15]. Although this analysis was
developed for the ‘all or none’ type of unwinding assay, in which only the appearance of the
completely unwound DNA is monitored, it can be extended to other assays.

Bianco and co-workers [16] developed a bulk assay to measure the step size of RecBC
helicase, which moves in the 3′ → 5′ direction along DNA. They used a DNA template with a
gap in the strand on which the RecBC translocates and monitored the unwinding of the DNA
on both sides of the gap. The rationale is that the helicase can bridge a gap no larger than its
step size. By varying the length of the double-stranded region before the gap and the length
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of the gap, a step size of 23 nucleotides was suggested and a ‘quantum inchworm’ model was
proposed for the motion of RecBC [16].

In this short review we are concerned with a powerful complementary approach for
determining the step size of a processive enzyme, or, more generally, the fundamental unit
of a repetitive biological process, through analysis of the variance of single-molecule time
trajectories. We review methods of step size determination based on the analysis of the
variance in both the time and frequency domains. Moreover,we generalize this single-molecule
approach and propose a method for obtaining the step size from bulk measurements based on
the analysis of the variance.

Analysis of noise has a long and illustrious history in both physics and biology. Einstein’s
theory of the random (Brownian) motion of pollen grains first described by Robert Brown
provided one of the first connections between macroscopic observables and the microscopic
atomic theory of matter [17]. Einstein’s proposal, a version of what we now term the fluctuation
dissipation theorem, permitted Perrin to make one of the first accurate determinations of
Avogadro’s number [18, 19]. In neuroscience, long before single-channel recordings were
possible, Katz and Miledi [20] applied noise analysis to the problem of acetylcholine-mediated
muscle end plate depolarization. By measuring the variance of the membrane potential
they were able to deduce a quantal depolarization, which they attributed to the opening of
individual ion channels. This analysis allowed them to make the first measurement of the
depolarization potential of a single channel, as well as the number of channels involved
in a single depolarization event. The advent of single-channel recording permitted direct
measurements of these parameters, though noise analysis is still employed for channels that
are not amenable to single-channel recordings, such as low conductance and difficult-to-isolate
channels [21]. Analysis of variance carried out in this fashion permits the extraction of the
fundamental quantum of a stochastic signal. Below, we present a detailed application of this
principle for obtaining the step size measurement for a translocating protein.

The principle was introduced by Shottky in 1918 for deducing the charge of the electron
from a statistical analysis of the current in a vacuum tube [22]. He derived the fluctuations in
this current, which he called ‘shot noise’, by likening it to the noise of hail hitting a surface.
The gist of the argument is as follows. The current I measured during a time interval t is due
to a number n(t) of electrons with charge e impinging on the anode: I (t) = en(t)/t . As the
electrons are uncorrelated and arrive randomly on the anode, the probability of n electrons
arriving during t , Pt (n), is Poisson distributed:

Pt (n) = K n exp(−K )/n!

where K is the mean number of electrons that arrive during t . The average current is Ī = eK/t
and its variance is 〈(I − Ī )2〉 = (e2/t2)〈(n − K )2〉 = e2 K/t2 = e Ī/t (since the variance of a
Poisson distribution is equal to its mean, K ). The unit of charge, e, can therefore be deduced
from the ratio of the average current and its fluctuations measured over a time interval t .

2. Time domain fluctuation analysis for the determination of the step size

Just as the variance in shot noise is proportional to the charge of the electron, the variance
in the stepping records of a translocating protein is proportional to its step size. Block and
co-workers first applied fluctuation analysis to single-molecule recordings of kinesin [23, 24].
Since the stepping of kinesin had been observed and characterized directly from time traces [4],
their work focused on obtaining the number of rate-limiting steps in the kinesin biochemical
cycle. We will follow a similar line of reasoning to obtain the step size from single-molecule
recordings of enzyme displacement.



S3814 K C Neuman et al

Consider a simple Poissonian molecular motor making one step of size d along its track
(microtubule, actin, DNA, etc) in a mean time τ̄ (typically the average period of its ATP
hydrolysis cycle). Since stepping is a random process, the number n of steps performed in a
time t is Poisson distributed (like the shot noise):

P(n) = (t/τ̄ )n exp(−t/τ̄ )/n!.

The observed position x(t) of the enzyme along its track after a time t is then

x(t) = nd + η(t) (1)

where η(t) is the positional Brownian noise, with mean 〈η〉 = 0 and variance 〈η2〉 = kBT/α,
and α is the combined spring constant of the measurement system (including the stiffness of
the motor and the intrinsic stiffness of the optical or magnetic trap). The mean and variance
of the displacement are given by

〈x〉 = d(t/τ̄ ) (2)

〈(x − 〈x〉)2〉 = d2(t/τ̄ ) + 〈η2〉. (3)

From these expressions it is clear that the step size d can be obtained from the ratio of the time
derivatives of the variance and the average position (i.e., the mean velocity); see figure 1.

If we now consider the more general case of an enzyme that makes one physical step
at some point during an arbitrary biochemical cycle, the full cycle must be included in the
analysis. For simplicity we consider only irreversible on-pathway transitions, although tools
for calculating the completely general case have been developed [25]. As an example we
consider a cycle with m states, during which a single step of displacement d is made:

1
k1−→ 2

k2−→· · · km−1−→ m
km−→ 1.

The mean cycle time is given by

τ̄ =
∑m

i=1
1/ki (4)

and it has a variance

σ 2
τ = 〈(τ − τ̄ )2〉 =

∑m

i=1
1/k2

i .

The randomness parameter, r = σ 2
τ /τ̄ 2 = ∑m

i=1(ki τ̄ )−2, is indicative of the randomness of
the enzymatic cycle (or stepping time) [25, 26]. If the biochemical cycle consists of a single
transition (m = 1), or if one transition rate in the cycle is significantly slower than the others,
r = 1. The time between steps, P(τ ), is then exponentially distributed:

P(τ ) = exp(−τ/τ̄ )/τ̄ .

Alternatively, if each of the m transitions has the same rate, r = 1/m, and the enzymatic cycle
time is more narrowly distributed:

P(τ ) = mmτm−1 exp(−mτ/τ̄ )/(m − 1)!τ̄m

(in the limit m → ∞, this distribution becomes Gaussian with mean τ̄ and variance τ̄ 2/m).
In general r is inversely related to the number of rate-limiting steps in the enzymatic cycle.

The randomness of the enzymatic cycle affects the variance of the displacement of the
translocating enzyme (i.e. more rate-limiting steps produces less randomness and a reduced
variance). Thus while the mean velocity is still given by v = 〈x〉/t = d/τ̄ , the variance in the
displacement is [25]

σ 2
x = 〈(x − 〈x〉)2〉 ≈ d2(t/τ̄ )r + 〈η2〉. (5)

The inclusion of additional steps in the biochemical cycle leads to an additional factor
in the expression for the variance. The apparent step size determined by comparing the time
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(a)

(b)

Figure 1. Determining step size through variance analysis in the time domain. (a) Simulations of
single-molecule position recordings (x(t)) are generated by adding Gaussian noise to a stochastic
stepping trace. Individual step transitions are masked by the noise. Two noisy traces are shown
along with one trace without noise. Traces are displaced on the y axis for clarity. The average
velocity for each trace is obtained by a line fit to x(t), which is averaged over all traces to obtain
the average run velocity v. For each trace the variance as a function of time is found using the
average velocity v. These are then averaged together (b) and the slope of this average variance as
a function of time divided by the velocity gives the step size. The simulated data had a step size of
8 nm, Gaussian noise with σ = 8 nm, and a stepping rate of 1.2 s−1. Analysis was performed on
100 traces. The average velocity is 9.4 ± 0.2 nm s−1 and the slope of the average variance versus
time trace is 73.84 ± 0.02 nm2 s−1, which combine to give a measured step size of 7.8 ± 0.3 nm.

derivative of the variance to the average velocity is the actual step size d multiplied by the
randomness parameter r :

rd = 1

v

∂σ 2
x

∂ t
. (6)

Therefore to accurately measure the step size d using this procedure, r must be measured
independently. However, even if r is unknown, equation (6) will still yield a lower bound for
the step size since, in the absence of backward steps, rd < d .

Whereas both the variance and average displacement grow linearly in time, the noise
〈η2〉 is constant; thus measurements of step size based on the variance are largely insensitive
to noise. Indeed, the individual steps can be completely obscured by Brownian noise, yet
the step size can still be recovered given sufficiently long time traces. By the same token,
the instrument requires neither the spatial nor temporal resolution to capture individual steps.
However, the duration of the measurement may be limited by the number of steps taken by
the motor before it detaches from its substrate, i.e. its processivity. Consequently, variance
based step size determination is only applicable to processive molecular motors. The principal
limitation in this technique is the randomness factor that arises from the slowest transitions
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in the biochemical cycle. If the details of the biochemical cycle are known, the randomness
can be calculated, including the effects of off-pathway states, reversible reactions, and futile
biochemical cycles [25]. Since this is rarely, if ever, the case, other means of determining the
randomness are required. If one transition can be made rate-limiting, for example by working
at limiting ATP concentration [27] or applying a significant load, the randomness will be close
to one and the variance analysis will yield the step size. Conversely, if the step size is known,
then measurements of r can reveal details of the biochemical cycle that may otherwise be
difficult to obtain [27, 28]. In practice the time domain analysis of fluctuations is used almost
exclusively to calculate r , rather than the step size.

3. Fluctuation analysis in the frequency domain for the determination of the step size

The fluctuations due to the stochastic stepping of an enzyme can also be analysed in the
frequency domain to yield the step size, d . Variance analysis in the frequency domain has
been used in a number of instances to determine the step size of processive enzymes, including
UvrD helicase [29], the DNA translocase FtsK [30], and the unwinding step of topoisomerase
IA [31]. Charvin and co-workers first developed the frequency domain approach to finding
the step size [32] and we follow a similar derivation here.

We begin with the time-dependent position of an enzyme that has taken n steps of size d
at various time points ti (i = 1, . . . , n):

x(t) = d
∑n

i=1
θ(t − ti ) + η(t) (7)

where θ(t) is the Heaviside function, which is unity for positive t and zero otherwise, and η(t)
is the Brownian noise as previously defined. The Fourier transform of the position signal is
given by

x̃( f ) = d

2π i f

∑n

i=1
exp(2π i f ti ) + η̃( f ), f > 0. (8)

For the case of a stochastic enzyme the step times are uncorrelated; hence the sum is over unit
vectors pointing at random in the plane. The mean of the sum is zero but the variance is n.
This allows us to compute the averaged power spectrum, 〈Sx ( f )〉, of the fluctuations in the
position measurement:

〈Sx ( f )〉 = 2〈|x̃( f )|2〉
T

= d2 N

2π2T f 2
+ 〈Sη( f )〉 = dv

2π2 f 2
+ 〈Sη( f )〉, f > 0 (9)

where N is the average number of steps in time T , v = Nd/T is the mean velocity, and
〈Sη( f )〉 is the noise power spectrum of a particle undergoing Brownian motion in a harmonic
potential with stiffness α,

〈Sη( f )〉 = kBT

πα f0(1 + ( f/ f0)2)
, (10)

where f0 is the roll-off frequency of the noise (which decreases with increasing drag on the
system). The important point is that at low frequencies ( f 	 f0) the power spectrum of
the noise is flat (frequency independent), whereas the contribution of the stepping process
to the fluctuations in position (the first term on the right in equation (9)) increases as 1/ f 2.
For sufficiently long traces (i.e. sufficiently low frequencies in the power spectrum) the noise
power arising from the random stepping will dominate the Brownian noise. The step size d
can then be derived from a fit of the low frequency part of 〈Sx ( f )〉 to the functional form:
dv/(2π2 f 2); see figure 2.
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Figure 2. Determining step size through variance analysis in the frequency domain. Estimation of
the step size of the DNA translocase FtsK in single-molecule experiments (figure taken from [31]).
As an FtsK enzyme reels in the DNA at a rate v, x(t) decreases. The quantized nature of the DNA
translocation by FtsK results in an increase in the low frequency variance of x(t). Compare the
signal measured during FtsK activity (filled circles) with the noise signal (open circles) measured in
the absence of FtsK activity. A fit of the low frequency components of the mean position variance
〈Sx ( f )〉 to the functional form: 〈Sx ( f )〉 = dv/(2π2 f 2) + b (line), yields the enzymatic step size:
d = 12 ± 2 bp (assuming a single rate-limiting step).

In practice, the position fluctuations are obtained by subtracting a line of slope v, the
average velocity, from the experimentally measured position trace. The average power
spectrum of several such processed traces can be fitted to obtain the step size. The determination
of step size is insensitive to the details of the method used to obtain the power spectrum;
however, care should be taken to ensure that it is correctly normalized. This can be
accomplished by analysing artificial data from simulations, or, preferably, from measurements
of known trajectories generated by moving a piezoelectric stage, for example.

The frequency domain analysis of the step size is subject to the randomness of the step time
distribution in the same manner as the time domain analysis, although the relation between
the spectrum and the randomness parameter is less obvious. Charvin et al suggest how to
compute the spectrum for an arbitrary reaction pathway [32]; however, we will not duplicate
their arguments here. In general the same caveats and precautions concerning the time domain
analysis also hold for the frequency domain analysis. In particular, note that the step size
measured using these techniques is the physical step of the motor along its track, which does
not necessarily correspond to the fundamental enzymatic step. For example, one could imagine
a translocation mechanism in which the enzyme proceeds through several enzymatic turnovers
before the protein changes position (i.e. a many to one coupling). The step size determined
from the analysis of variance of single-molecule recordings would correspond to the physical
motion of the protein, while the multiple enzymatic cycles required to produce one physical
step would be reflected in the reduced randomness parameter r .

4. Variance analysis of bulk kinetic data to obtain the step size

In this final section we propose a method of determining the step size of a processive enzyme
by analysing bulk kinetic measurements of the time required to move over a fixed distance. A
typical example involves measuring helicase unwinding of dsDNA by quantifying the amount
of completely unwound ssDNA as a function of time [33].
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(a)

(b)

Figure 3. Variance based measurement of the step size from bulk measurements. (a) Results from
a bulk DNA unwinding assay were simulated by averaging over 105 individual trajectories. The
unwinding activity was modelled with a constant 4 bp step occurring at a single rate of 0.2 s−1.
Total unwinding was assumed when a number of bases equal to or greater than the DNA length
had been unwound. The distribution of unwinding times is shown for dsDNA lengths of 20 bp
(solid line) and 45 bp (dashed line). For the 20 bp DNA the variance in unwinding times is 126 s2

and the average is 25 s. The mean time between steps τ derived from the ratio of the variance
to the mean, τ = 5.04 s, yields a step size of 3.97 bp. For the 45 bp DNA the calculated step
size is 3.75 bp. The difference in step size calculated from the variance results from the extra step
that occurs when the DNA length and the unwinding step are incommensurate. The actual step
size can be determined by a line fit to the DNA length as a function of the calculated number of
steps (inset). The slope of the line gives the actual unwinding step size. Fitting the results of the
simulation for DNA lengths ranging from 25 to 45 bp gives a step size of 3.82 ± 0.03 bp, which
compares well with the simulated step of 4 bp. (b) Fit to actual bulk data for DNA unwinding
by UvrD helicase from Ali and Lohman [33]. The cumulative probability distribution for ssDNA
(l = 18 bp) unwound by UvrD helicase was differentiated with respect to time to obtain the waiting
time distribution of ssDNA formation. The waiting time distribution (filled circles) was fitted to
the gamma distribution (equation (11); smooth curve), yielding a step time τ = 0.041 ± 0.004 s
and number of steps n = 4.9 ± 0.4, which give a step size of 3.6 ± 0.2 bp. For comparison, the
mean (0.18±0.03 s) and variance (0.009±0.002 s2) of the unwinding time were computed, which
give a mean time between steps τ = 0.053 ± 0.004 s and a mean number of steps n = 3.4 ± 0.4,
corresponding to a step size d = 5.3 ± 0.4 bp. These values compare reasonably well with those
obtained from a global n-step kinetic model fit to the data from four different lengths of dsDNA [33]:
τ = 0.054 ± 0.004 s and 〈d〉 = 4.4 bp. The fit to the n-step model assumed a fixed integer number
of steps n for each dsDNA length, which may account for the discrepancy between the values
obtained using the different methods.

From these data we will show how to extract the number of base pairs opened per cycle
d , by an analysis of the variance of the unwinding times t . The number of steps that a helicase
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takes to reach the end of a length l of dsDNA is n = l/d . We assume that the time between
steps follows an exponential distribution with mean time τ̄ and that there are no backward
steps. We are interested in the distribution of the unwinding times, t , for a helicase to release
an ssDNA of length l. For a sequence of n steps, the distribution of unwinding times, Fw(t),
is given by the gamma distribution:

Fw(t) = (t/τ̄ )n−1 exp(−t/τ̄ )

τ̄ · 	(n)
(11)

where 	(n) is the gamma function, defined for all positive values of n. If n is an integer,
	(n) = (n − 1)!. The mean and variance of the unwinding time for n steps are t̄ = nτ̄ and
〈(t − t̄)2〉 = nτ̄ 2. By measuring the rate at which ssDNA appears in solution (or the rate at
which dsDNA disappears), the mean and variance of the unwinding time can be deduced and
their ratio provides the mean time between steps τ̄ . The number of steps is n = t̄/τ̄ and the
step size d = l/n; see figure 3. This approach is related to the n-state kinetic model discussed
above [33]. Whereas the n-state model considers the amount of ssDNA produced as a function
of time, the analysis of variance considers the rate of ssDNA production.

This simple example illustrates that the analysis of variance can equally well be applied to
bulk kinetic measurements. Since bulk assays typically monitor the rate of product formation
(or substrate depletion), the step size derived from the analysis of variance, or other methods,
corresponds to the enzymatic step,which, as mentioned above,does not necessarily correspond
to the physical step size. In this respect the two measurement techniques are complementary.

5. Conclusion

Variance analysis is a powerful statistical method for extracting features that are invisible in
direct single-molecule or bulk data. It makes very few assumptions on the kinetics of the
enzymatic motor, which is summed up in the randomness parameter. Under certain conditions
this parameter can be estimated and the step size deduced. Alternatively, if the step size is
known, the randomness parameter can be deduced from the variance analysis,yielding precious
information on the number of rate-limiting steps in the enzymatic cycle. Variance analysis has
been used in many different contexts to extract quantized information, such as the charge of the
electron [22], the fractional charge of quasi-particles in the quantum Hall effect [34], single-ion
channel depolarization events [21], the step size of molecular motors such as helicases [15, 29],
and the number of supercoils relaxed by the action of topoisomerase 1A on DNA [31]. This
simple and versatile method will certainly find new areas of application in the future.
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